

Basic research at hospitals: the keystone to boost the travel from bench to clinical practice

Dr Diego Clemente

Neuroimmuno-Repair Lab Research Unit National Hospital for Paraplegics Toledo (Spain)

Diego Clemente, Ph.D.

EDUCATION

B.Sc. in Biological Sciences; **Ph.D. in Biology (Neurosciences).** University of Salamanca (Spain) **Extraordinary Ph.D. Award**

PREVIOUS POSITIONS

2004-2006.- Postdoc fellow. Cajal Institute-CSIC (Spain; Carmen Guaza) 2006-2015.- Senior postdoc fellow. National Hospital for Paraplegics (Spain; Fernando de Castro)

CURRENT POSITION

- 2015- .- Principal Investigator of the Neuroimmuno-Repair Group. National Hospital for Paraplegics (Spain)
- 2019- .- Honorary Professor at the Universidad Autónoma de Madrid
- 2021- .- Member of the Executive Board of the Spanish Society of Neuroscience

RESEARCH SUMMARY

41 papers; H index: 23; 1,804 citations; P.I. 13 MS grants; 2 patents; 4 industrial research agreements

MY EXPERTISE

Innate immune system: valuable tool for the control of NEUROINFLAMMATION and NEURAL REPAIR, and as BIOMARKER for MULTIPLE SCLEROSIS

Neuroimmuno-Repair Group (GNIR)

Diego Clemente, Ph.D. (Principal Investigator) María Cristina Ortega, Ph.D. Mari Paz Serrano, Ph.D. Leticia Calahorra, Ph.D. Celia Camacho-Toledano, M.Sc. Isabel Machín-Díaz, B.Sc. (Lab Manager) Inmaculada Alonso García (Lab technician) Jennifer García-Arocha (Lab technician)

Young Research Lab. Funded in 2015

Members of the Spanish Network of MS (Coordinator: Dr L.M. Villar)

Leaders on the study of MYELOID-DERIVED SUPPRESSOR CELLS (MDSCs) in MS:

- 1) immunodulatory agents to control adaptive immune response
- 2) myelin repair
- 3) biomarkers of disease progression in HUMANS

One third of the published papers in the field comes from our group.

National Hospital for Paraplegics

Spanish reference hospital fully dedicated to spinal cord injury (SCI) patients

- Inaugurated in 1974
- 211 beds
- Aproximmately 20% of our patients have SCI from an inflammatory origin

<u>GOALS</u>

Health improvement and <u>holistic rehabilitation</u> <u>Neuroscience Research</u> totally focused on the search of efficacious treatments for **neuroinflammation** and **neural repair**

Research Unit of the HNP (UDI-HNP)

Research activity organized in the Research Unit

Since 2013, we have a new building fully dedicated to **RESEARCH AND INNOVATION**

-Myeloid-derived suppressor cells as potentiating agents of myelin repair in MS.

-Analysis of the inflammatory lesion environment in MS.

-Screening for molecular and cellular biomarkers of MS severity.

- New therapeutic targets for neuroprotection in MS.

GNIR: Funding

<u>ന്ന</u>

Global funding (Grants): 1,336,187 €

Spanish Ministry of Science and Innovation

Marie Curie Actions-FP7; European Union

Regional Government of Castile-La Manche

Merck Serono EMB

Bristol Myers Squibb

French Foundation for the Research on Multiple Sclerosis

Spanish Society of Multiple Sclerosis (MS patients)

What are MDSCs?

What is the role of MDSCs in MS?

MDSC markers

Disease	EAE/MS (peak) ¹		Cliance ²		11	c c) 1	0
/Species	G-MDSCs	M-MDSCs	Glioma		Overts	SCIT	Ageing
MOUSE	CD11b ^{high} Gr-1 ⁺⁺⁺ Ly-6C ^{int} Ly-6G ^{high} MHC-II ⁻ F4/80 ⁻ Arg-I ⁺ iNOS ⁻ CD11c ⁻	CD11b ^{high} Gr-1+ Ly-6C ^{high} Ly-6G ^{-/low} MHC-II ^{-/low} CD124+ F4/80+ Arg-I+ iNOS + CD115+ CD115+ CD11c ^{-/low} CD62L+ CCR2+	CD11b ⁺ Ly-6C ^{low} Ly-6G ^{high} Gr-1 ⁺ Arg-1 ⁺ CD124 ⁺ IL-10 ⁺ PD-L1 ⁺		CD11b ⁺ Gr-1 ⁺ Ly6C ^{high} Ly6G ⁻ iNOS ⁺ Arg-1 ⁺	CD11b ⁺ CD45 ⁺ Gr-1 ⁺ Ly-6C ⁺ Ly-6G ⁻ CCR2 ^{high} iNOS ⁺ Arg-l ⁺	CD11b⁺ Gr-1⁺ CD115⁺
HUMAN	CD15 ⁺ CD33 ⁺ HLA-DR ^{low} CD14 ⁻ PD-L1 ⁺		G-MDSCs	M-MDSCs			CD11b ⁺
		CD15 ⁻ CD33 ⁺ HLA-DR ^{-/low} CD14 ⁺	CD33 ⁺ HLA-DR ⁻ CD15 ⁺ CD14 ⁻	CD33 ⁺ HLA-DR ⁻ CD15 ⁻ CD14 ⁺	Not determined	CD11b ⁺ CD115 ⁺ CD33 ⁺ HLA-DR ⁻	CD14 ^{10W} PD-L1 ^{high} CD33 ⁺ LIN ⁻ HLA-DR ⁻ B7-H1 ^{high}

Graft versus host disease

Myeloid-derived suppressor cells: Natural regulators for transplant tolerance Peter Boros^{**}, Jordi C. Ochando^b, Shu-Hsia Chen^b, Jonathan S. Bromberg^{*,b} ^{*Boundiffer Templantin Indust, Mani Stati Chaid (Metche, Wor York, Mor York, US) ^{*Dymmund (Gene and C Metche, Mani Stati Odd (Metche, Work, New York, US)}}

Review Article

Myeloid-Derived Suppressor Cells Participate in Preventing Graft Rejection

Yan Wang, Xiaodong Gu, Jianbin Xiang, and Zongyou Chen

Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China

Uveitis

Immunology and Microbiology

Myeloid Suppressor Cells Induced by Retinal Pigment Epithelial Cells Inhibit Autoreactive T-Cell Responses That Lead to Experimental Autoimmune Uveitis

Zbidan Tu,¹ Yan Li,¹ Dawn Smith,² Catberine Doller,² Sunao Sugita,³ Cbi-Cbao Cban,⁴ Sbiguang Qian,⁵ Jobn Fung,⁵ Rachel R. Caspi,⁴ Lina Lu,⁵ and Feng Lin¹

Arthritis

The Journal of Immunology

1) Ioannou et al., 2012; Moliné-Velázquez et al., 2011; Moliné-Velázquez et al., 2014; Yang et al., 2014; Yi et al., 2012; Zhu et al., 2007; Zhu et al., 2011.

- 2) Fujita et al., 2011; Gielen et al., 2015; Kohanbash et al., 2013; Raychaudhuri et al., 2015; Zhu et al., 2011.
- 3) Lee et al., 2015; Rodrigues et al., 2010; Tu et al., 2012.
- 4) Saiwai et al, 2012.
- 5) Eniuontina et al., 2011; Hertzenberg et al., 2013; Verschoor et al., 2013.

Modified from Melero-Jerez et al., 2016; Biochim. Biophys. Acta-Mol Basis Dis. 1862: 368-380

Myeloid-Derived Suppressor Cells Play Crucial Roles in the Regulation of Mouse Collagen-Induced Arthritis

Wataru Fujii,* Eishi Ashihara,[†] Hideyo Hirai,[‡] Hidetake Nagahara,* Naoko Kajitani,* Kazuki Fujioka,* Ken Murakami,* Takahiro Seno,*^{,§} Aihiro Yamamoto,* Hidetaka Ishino,* Masataka Kohno,* Taira Maekawa,[‡] and Yutaka Kawahito*

Research lines = Open Clinical Questions

MS is highly heterogeneous

How can I choose the good medication for MS?

Highly severe MS patients remain reluctant to treatments

There is a lack for regenerative treatments

New therapeutic targets (progressive MS)

Biomarkers to predict disease severity and regenerative ability

Biomarkers to predict the response to treatments

Cell-based therapy to avoid disability advance

New agents to improve remyelination

New molecules for the progressive forms of MS

PRECLINICAL STUDY

CLINICAL STUDY

U NOVARTIS

FINGOLIMOD

Material transfer agreement

EVOBRUTINIB

Collaborative agreement (200 k€)

Collaboration with industry: research

Sescam

Conclusions

Clinical investigators should be more interested on research activity, improving their scientific formation.

Basic researches at hospitals should addapt their scientific questions to the clinical neccesities.

Basic/preclinical research at hospitals could are useful to accelerate the transition to clinical practise.

Hospital and profesional networks are optimal environments for traslational research.

Basic/preclinical research at hospitals can be also attractive to private funding, specially from pharmaceutical companies.

Grupo de Neuroinmuno-Reparación (GNIR)

MIEMBROS DE GNIR

Dr. Diego Clemente López Dra. M^a. Cristina Ortega Muñoz Dra. M^a Paz Serrano Regal Dra. Leticia Calahorra Melero

Isabel Machín Díaz Celia Camacho Toledano Jennifer García Arocha Inmaculada Alonso García

HV Salud

I.P. Molina J.M.G^a. Domínguez V. Meca

M. Nieto-Díaz

U. SALAMANCA/INCYL

COLABORACIONES

B. Kaminska

D. Fitzgerald

D. Otaequi

M. Comabella C. Espejo

ICCM/CSIC

CIC-CSIC

C. Serrano

Queen's U. Belfast

Unión Europea GOBIERNO MINISTERIO Fondo Europeo de DE ESPAÑA **DE CIENCIA** Instituto Desarrollo Regional UNIÓN EUROPEA **E INNOVACIÓN** de Salud "Una manera de hacer Europa' Fondo Social Europeo Carlos III I FSE invierte en tu futuro red**Española**de sescam esclerosismúltiple **Castilla-La Mancha**

FINANCIACIÓN

H R U Málaga

Ó. Fernández

Instituto Cajal/CSIC

C. Guaza